Yearly Support

FPGAs are used all the time in computing these days. Here we examine some fundamental
reasons why FPGAs are great for computing.

Why-use-FPGAs-for-Computing

A traditional state machine produces the same output state vector at the same address. At
compile time it can have 2"~ n*Lpossible states where n is the number of output states and L
is the number of lines of microcode.

At runtime, the traditional state machine has L different state vectors.

Hotstate Outputs

To control state outputs stimulatingly use the comma operator.

LEDO =1, LED2 = 0; // This is 100% C

These states will toggle at the same time leaving all other states quiescent.

The state outputs are qualified by the corresponding mask bit and latched if appropriate.
The mask bit and state bits are combined into the state output.

state[i] = mask[i]?new state[i]:old state;

At compile time the hotstate machines have 27~ n*L possible states where n is the number of
output states and L is the number of lines of microcode.

At runtime the possible number of state outputs at any one address during run time is

L
Z k x z(n—m)
k=1

where n is the total number of states and m is the number of states used in that line of code
and L is the total number of lines of microcode.

https://hotwright.com/wp-content/uploads/2022/06/Why-use-FPGAs-for-Computing.pdf

Yearly Support

In the traditional algorithmic state, there is one (1) state vector per address.

Traditional
Microcoded Algorithmic State Machine

Has the same state outputs at a
fixed address

State
outputs

Timer0

Timerl

Control input

Control Address +1
Address Address

Control bits

Has fixed microcode word

Yearly Support

Hotstate Runtime Loadable
Microcoded Algorithmic State Machine

Can have different state outputs
at a fixed address

State
Variable outputs
Input -
uberLUT

Control

Address

Switch .
- Switch Address . .
inputs Control bits

Microcode word width adapts for each program

The difference in state outputs between
traditional and Hotstate state machines

Next state State out

The traditional state machine always Passes next state to state out if
passes next state to state out. mask =1
At runtime, there are 2*(m-n)
At runtime there is one output vector states where m is the number of
at any one address states and n is the number of
states used at that address

